

Taxonomic classifiers IMPRS Lecture – Maxime Borry

Why do I care ?

DNA

To extract information from the 90% "other", you need a taxonomic classifier to answer the question:

Who is there ?

What is a taxonomic classifier ?

Why not species classifier ?

- Species level assignation is not always possible.
- Possibility of hits in different species
- Ambiguities solved by LCA (Lowest Common Ancestor) algorithm.

		-	,	
via	XIM	ie E	Sorr∖	/

LCA 95%

LCA 90%

LCA 85%

Μ	axim	ne Bor

Hit	Identity
Pan paniscus	97%
Pan troglodytes	96%
Homo sapiens	92%
Gorilla gorilla	87%

Pan

Hominini

Homininae

LCA example

Reference strategy: single locus

(Also known as Amplicon metataxonomics, Phylotyping, Metabarcoding)

Targeted amplification and deep sequencing of clade-universal gene

- Amplification of locus by PCR with primers targeting conserved regions or directly from WGS
- (Deep) Sequencing of amplicons
- Comparison to reference marker database

Side note: vocabulary matters ! (to some)

Metataxonomics vs Metagenomics

Jonathan Eisen 🤣 @phylogenomics

Well, this software might be useful for **#metagenomics** but drives me crazy when people refer to 16S PCR as **#metagenomics** plosone.org/article/info:d...

🙄 20 8:22 AM - Aug 22, 2012

0

>

See Jonathan Eisen's other Tweets

Single locus marker genes for bacteria: 16s

Yang, B., Wang, Y., & Qian, P. Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. *BMC bioinformatics*, *17*(1), 135.

16s rRNA

- Part of the 30s prokaryotic ribosome subunit
- Stems are more stable -> conserved
- Loops are mutating faster -> variable

Single locus taxon assignation

Spoiler: Reads are clustered by sequence identity

The example of **QIIME**: OTU picking

De Novo OTU picking:

Reads are clustered against one another without any external reference sequence collection

Closed Reference OTU picking

Reads are clustered against a reference sequence collection and any reads which do not hit a sequence in the reference sequence collection are excluded

Open Reference OTU picking:

Reads are clustered against a reference sequence collection and any reads which do not hit the reference sequence collection are subsequently clustered de novo.

OTU (Operational Taxonomic Unit): Cluster of Organism grouped by sequence identity (usually 97%)

Single locus metaxonomics tools and databases

Qiime 2

Mothur

Tools

Dada 2

Databases

Maxime Borry

16s single locus limitations

- Not specific enough for sub-species classification
- Amplification bias: primer binding and GC-content
- If recovered from WGS data, very low amount (~ 0.2 0.6 %)

Limitations specific to ADNA

- Hypervariable regions length greater than typical aDNA fragment length

Reference strategy: multi-locus

Use a set of single-copy housekeeping genes

- Sequence divergence greater than 16s
- Single-copy: access to quantification

Metaphlan 2

- 1 million marker genes
- ~17,000 reference genomes
- ~13,500 bacterial and archaeal
- ~3,500 viral
- ~110 eukaryotic
- Uses Bowtie2 for mapping

Limitations

 Database not updated: good specificity but poor sensibility

Truong, Duy Tin, et al. "MetaPhIAn2 for enhanced metagenomic taxonomic profiling." Nature methods 12.10 (2015): 902.

Reference strategy: whole genome

Use entire genomes as reference database:

- Greatest sequence diversity
- Beneficial for aDNA when only traces of ancient organism
- Need heuristic to efficiently search the reference genome database

Limitations:

- Horizontal gene transfer, mobile elements, recombination decrease precision (b)
- Variable bacterial genome sizes skew DNA proportion estimation
- Sparse database compared to 16s lead to more false assignments

More false negative (not in DB)

More false positives (database bias) because assigned to closest relative

Query strategy: Alignment free

Only look for exact matches between query and database

- Slice the reference genomes and the query into kmers of fixed size and save them into hash table
- Match kmers in query and reference
- Map the kmers to the taxonomy

kmer: substring of size k

Alignment free methods

Kraken Taxonomic Sequence Classification System

Kraken 2 Taxonomic Sequence Classification System

Centrifuge

Classifier for metagenomic sequences

KrakenUniq: confident and fast metagenomics classification using unique k-mer counts

CLARK

Fast, accurate and versatile sequence classification system

Alignment based advantages and limitations

Very quick

- Sensitivity and specify depend on k:
 - Low k: more sensitive, less specific
 - High k: less sensitive, more specific

- No alignment: can't check for DNA damages or functions

Query strategy: alignment based

Local vs Global Alignments

Local: Start and end alignment at any location in sequence. Algorithm: Smith-Waterman

Global: Align every nucleotide in every sequence. Algorithm: Needleman-Wunsch

Seed and Extend

- 1. Start with exact (or near exact) kmer matching Very fast
- 2. Extend match on both sides if not too many mismatches then trigger alignment **Slower**

The Smith-Waterman algorithm

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. *Journal of molecular biology*, *147*(1), 195-197.

Temple Ferris Smith

Michael Waterman

ATGC

How to align these two sequences ? ATCC

		A _{i=1}	$T_{i=2}$	G _{i=3}	C _{i=4}
	0				
A _{j=1}					
$T_{j=2}$					
C _{j=3}					
C _{j=4}					

The Smith-Waterman algorithm

Scoring

Rule

Matrix

		A _{i=1}	T _{i=2}	G _{i=3}	C _{i=4}
	0	0	0	0	0
$A_{j=1}$	0	1	0	0	0
T _{j=2}	0	0	2	0	0
$C_{j=3}$	0	0	0	1	0
C _{j=4}	0	0	0	0	2

The Smith-Waterman algorithm

Traceback from (all) max scores, back to cell that gave maximum until reaching a 0

		A _{i=1}	T _{i=2}	G _{i=3}	C _{i=4}
	0	0	0	0	0
$\mathbf{A}_{j=1}$	0	1	0	0	0
T _{j=2}	0	0	2	0	0
$C_{j=3}$	0	0	0	1	0
C _{j=4}	0	0	0	0	2

ATGC ||*| ATCC

Your turn !

		G	т	т	G	A	С
	0						
G							
т							
т							
Α							
С							

Solution

		G	т	т	G	Α	С
	0	0	0	0	0	0	0
G	0	1	0	0	1	0	0
т	0	0	2	1	0	0	0
т	0	0	1	3	1	0	0
Α	0	0	0	1	2	2	0
С	0	0	0	0	0	0	3

Interactive Smith-Waterman:

GTT-AC

rna.informatik.uni-

<u>freiburg.de/Teaching/index.jsp?toolName=Smi</u> <u>th-Waterman</u>

Optimization: banded alignments

Alignment based: advantages and limitations

Alignment:

- Check for DNA damages
- Check for functions

Much (much) slower

DNA based alignment

MALT: **ME**GAN **AL**ignment **T**ool:

- Near exact seeds (spaced seeds)
- Mismatch tolerant extension (x-drop)
- Smith-Waterman (semi-global: read is aligned end-to-end)
- LCA

Protein based alignment

Same strategy as DNA based alignment, but using Amino acid substitution matrix.

BLOSUM: BLOcks SUbstitution Matrix

See also: Optimization with reduced alphabet (grouping amino acids by chemical properties)

Protein based alignment tools

MALT:

Protein to Protein Database DNA to Protein Database

Diamond:

Protein to Protein Database DNA to Protein Database No LCA (Megan)

No DNA damage estimation with protein alignment

Maxime Borry

Other strategies

Taxonomic classifiers for aDNA

Damage isn't really an issue

Ancient: Modern:	* \$	True True	+ QIIM ∲ QIIM	E/l E/l	JCLUST JCLUST	Malt Malt	
Ancient: Modern:		Meta Meta	PhIAn2 PhIAn2		MIDAS MIDAS		-S

PCoA of simulated community composition with Weighted-Unifrac Distance

aDNA damage doesn't really affect inferred community composition

The choice of database

- DNA database is better for short aDNA (<60 bp) than protein databases
- Translation of shorter sequences gives too small peptides to align
- Database composition matters

Eisenhofer, R., & Weyrich, L. S. (2019). Assessing alignmentbased taxonomic classification of ancient microbial DNA. *PeerJ*, 7, e6594.

Genbank vs Refseq

Genbank

The definition of species

- Taxonomic classifiers work with Taxonomy
- Wanna be a species ? Better be culturable !
- Not culturable but otherwise well characterized : included as *Candidatus Genus species*
- Otherwise: unclassified bacteria
 Lineage: Cellular Organisms; Bacteria; unclassified bacteria
 -> Problem with LCA

- ANI: Average Nucleotide Identity
- Gold standard: 95% ANI for species
- 15% of Genomes in Genbank from the same species have ANI < 93%

Choosing the right tool

First define the question:

Am I only asking **who is there** ?

Yes: Locus based or Alignment free method No: Whole genome DNA alignment based method

Do I have a lot of computing time to spare (and/or not so many samples at once) ?: Yes: Whole genome DNA alignment based method No: Locus based or Alignment free method

Do I have WGS sequencing data ? Yes: Prefer avoiding single locus (open debate) No: Single locus it is

Do I have long fragments and feel adventurous ?

Yes: Try whole genome protein alignment based method, or even Assembly No: Stick to the rest

Worst protein alignment ever (score = 2)